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Origin of the reduced attracting force between a rotating dielectric particle and a stationary one

W. J. Tian, M. K. Liu, and J. P. Huang*
Surface Physics Laboratory (National Key Laboratory) and Department of Physics, Fudan University, Shanghai 200433, China
(Received 15 June 2006; revised manuscript received 30 November 2006; published 9 February 2007)

Recently Tao and Lan [Phys. Rev. E. 72, 041508 (2005)] experimentally reported that the rotation of a
dielectric particle can reduce significantly the attracting interparticle force between the rotating dielectric
particle and a stationary one in argon gas. We develop the Gu-Yu-Hui theory of relaxation [J. Chem. Phys. 116,
24 (2002)] to account for the Tao-Lan observations. Excellent agreement between the theoretical results and the
Tao-Lan experimental data shows that the reduction in the attracting interparticle force is due to the effect of
charge relaxation. We also show that the relaxation time of touching rotating particles can be accurately
determined with the aid of the developed theory, for which, however, the well-known Maxwell-Wagner relax-

ation time is no longer valid.
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I. INTRODUCTION

The study of interparticle forces is important in many as-
pects of physics. For instance, if such forces are determined,
the macroscopic structures of various physical systems may
be determined. The interparticle forces between rotating par-
ticles are very important in the study of a variety of
systems—e.g., colloidal suspensions including electrorheo-
logical fluids and magnetorheological suspensions, living
cells suspensions, and so on—since the particles in these
fluids may rotate under a shearing flow [1-10]. The study of
the interparticle force between rotating dielectric particles
has received much attention [11-14].

If two particles are stationary, polarization charges are
caused to appear onto the surface of the particles in the pres-
ence of an external field. Once one of the particles starts to
rotate, the polarization charges tend to deviate from the origi-
nal position due to the rotation of the dielectric particle. On
the other hand, the charges tend to return to the original
position due to the directed external field. Thus, at dynamic
equilibrium, the two competitive effects can be mediated by
making the polarization charges locate in a position that dif-
fers from the original one, and thus the rotation changes the
polarization charge distribution. As a result, this change af-
fects the interaction between the two particles one of which
is rotating.

Recently Tao and Lan [11] experimentally reported that
the rotation of a dielectric particle can reduce significantly
the attracting interparticle force between the rotating dielec-
tric particle and a stationary one in argon gas. However, the
physical mechanism behind the Tao-Lan observations has
been up to now obscure [11]. To solve this, we shall present
a relaxation theory, which is developed from the Gu-Yu-Hui
theory [12] of relaxation. To this end, good agreement be-
tween the theoretical results and the Tao-Lan experimental
data shows that the origin of the reduction in the attracting
force between a rotating dielectric particle and a stationary
one is due to a redistribution of the polarization charges on
the surface of the rotating particle. Also, we shall show that
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the relaxation time of the touching rotating particle can be
accurately determined by using the theory developed, for
which, however, the well-known Maxwell-Wagner relaxation
time is no longer valid.

The current paper is organized as follows. In Sec. II, we
extend the Gu-Yu-Hui theory of relaxation to treat the polar-
ization of higher orders being beyond the first order. This is
followed by Sec. III where numerical results are presented
and our results are compared to the Tao-Lan experiment.
This paper ends with a discussion and conclusion in Sec. IV.

II. FORMALISM

According to the experiment setup designed by Tao and
Lan [11], let us consider two spherical particles in an exter-
nal electric field, one of which is held fixed and the other one
rotates around the axis perpendicular to the line joining the
centers of the two particles (Fig. 1). To proceed, we first
briefly review the Gu-Yu-Hui theory of relaxation [12]. Let
us consider two spherical dielectric particles without free
charges arranged in a host medium—e.g., inertial gases like
argon gas of dielectric constant 1.000 513. (The inertial gas
can reduce the chance of dielectric breakdown and the elec-
tric field between the particles may not be strong enough to
ionize the molecules.) There is an external applied electric
field in the z direction; see Fig. 1. According to the Gu-Yu-
Hui theory of relaxation [12], the distribution o(6,¢,t) of
the time-dependent surface-polarized charges on the rotating
particle satisfies the relaxation equation

da(0,¢,t)  do(6,¢,1) 90 do(6,¢,1) de
+ —+ —
ot 90 ot dp ot

=~ L0060~ 00(0.6)] (1)

where 6 and ¢ are the polar angles in the spherical coordi-
nates (r, 6, ¢), with the origin being located at the center of
the rotating particle, and 7 is the relaxation time. By using
the method originally introduced by Rayleigh [15], the sur-
face charge distributions o,(#') and o(#’') of the stationary
dielectric particle a and the rotating dielectric particle b are
given as
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FIG. 1. (Color online) Schematic graph showing two spherical
particles in an external electric field, one of which is held fixed and
the other one rotates around the axis perpendicular to the line join-
ing the centers of the two particles.

©

00(0') = 2 H,P/(cos §'), )
=1
o(6') = S HPy(cos §), 3)

=1

where 6’ is one polar angle in the spherical coordinates with
the origin being located at the center of one particle, as
shown in Fig. 1, P, are the Legendre polynomials, and H; and

H, are constants. To determine the induced attracting force

where

157T,a*R[20T5(2P,P5 — 3P3P¢)a’ — 3P5R |10
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between the stationary particle and the uniformly rotating
particle, the electric potential may be evaluated in both the
host and the rotating particle. And the energy of the system is

1
W=W,+W,=— >, (6,— €)E -Eod’x, (4)
T a=a,b Q,

where €, denotes the dielectric constant of the host and €,
the dielectric constant of the particles @ and b. In the follow-
ing, for simplification, €, will be denoted as e. At last, by
taking the derivative of the energy, a formula relating the
angular velocity of the rotating particle to the induced
electric force on the particle is then obtained:

F=%(1 +Y)F,, (5)

where F, represents the interparticle force when both par-
ticles are at rest. Here only the lowest order of ZV[=1/[1
+(7w)?]] is given, which seems to be insufficient to interpret
the Tao-Lan experiment data [11]. The data were shown to
depend on the separation between the particles, which im-
plies that the multipolar interaction between the particles
should be taken into account. Thus, in this work, more per-
turbation terms are needed to interpret the Tao-Lan experi-
ment results. After taking a lengthy calculation by taking
more perturbation terms, we obtain the force between the
rotating and the stationary particle analytically:

F=%(1 + W4 @4y fF, (6)

where n stands for integers. To this end, our analysis shows
that it is enough to keep terms up to third order, /%) [i.e., Eq.
(7)], since the contribution of the other terms is weak enough
to be neglected (see below). Then we obtain the interparticle
force F as

F=2(+0 424 ()R, )

[D=_

16[207,T5a'*(5P% — 6P4Pg) + 20T3Pga’R® — 6T,P,a’R” + R'Z][1 + 4(7w)*]’

14T3a°RY[3T,(4P; — 5P3Ps)a’ — 2P,R°](1w)*

(8)

§(3) —

 [20T,T5a'2(5P2 = 6P4Pg) + 20T3Pa’R® — 6T,P4a°R” + R'?|[1 + (70)?][1 + 9(7w)*]’

)

with a being the radius of the two particles. Here P,= P(cos '), R(>2a) denotes the center-to-center separation between the

two particles, and the coefficient 7; is given by

T,

3 1-¢€leg,
T (1+¢€le)+ 117

(10)

To comply with the experiments by Tao and Lan [11], let us set the line joining the centers of the two particles to be along the
% axis, and then P;(cos €') turns out to be 1. Now ¢? and ¢ can be rewritten as
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5(2) -

16[— 20T, T5a'? + 20T5a’R’ - 6T,a°R” + RY[1 + 4(7w)*]’

14T3a°RY[3T,d’ + 2R%](70)>

(1)

§(3)=_

From Egs. (11) and (12), it is evident that the reduction of
the interparticle attracting force [Eq. (7)] depends on the gap
between the two particles.

III. NUMERICAL RESULTS

In Fig. 2, we investigate the reduction of the attracting
force F/F versus the separation R between the centers of
the two particles for the perturbation terms up to first order
[F=(1/2)(1+{D)F,], second order [F=3(1+¢V+{?")F]
with ' =(457T,a*RPy70) 1{(16[-6T,P,a° + R%][ 1
+4(7w)?])}, and third order [F=(1/2)(1+{V+ @+ O)F,].
We find that the addition of the high-order terms plays a
significant role in the reduction of the attracting force, espe-
cially as the gap between two particles is small (in this case
the multipolar interaction between the particles becomes
more evident). Nevertheless, if the two particles separate in
distance, the first-order approximate is good enough already.

From Fig. 2 [or Eq. (5)], we can see that the force up to
the first order ¢!’ (which is already showed in Ref. [12]) is
unrelated to the separation R, because it is within the dipole
approximation. In this situation, the relation between the in-
terparticle force and the separation is contained only in the
function of F,,. The force up to the second order (' is
within the quadrupole approximation, while that up to the
third order £ is within the octopole approximation. When
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FIG. 2. (Color online) The effect of the terms up to first
order [F=%(1+§(”)Fo], second order [F=%(1+§(l)+{(2)’)F0]
with (@7 =(457T,a*RP37w) /{(16[-6T,P4a’ + RO 1 +4(7w)2])},
and third order [F:%(1+§(1)+ D+ F,] on the reduced inter-
particles force F/F), versus the separation R between the centers of
a stationary dielectric particle and a rotating one. Parameters:
€,=2.5¢y and €,=1.000513.

[-207,T5a"% + 20T5a’R® — 6T,a’R” + R][1 + (70)?][1 + 9(7w)*]’

(12)

the two particles are separated far away, the full expression F
[Eq. (6)] reduces to Eq. (5). That is, in this case the two
particles can be seen as point dipoles. This is both physical
and reasonable. In addition, we have also calculated 4“(" with
n up to 30 numerically and found that the result predicted by
the expressions with terms up to nth order (n>3) is similar
to that up to n=3 only. So, in this work, the neglect of the
terms of higher orders is reasonable as well [Eq. (7)].
Figure 3 shows the reduction of the attracting force versus
rotation frequency w (in unit of rotations per minute) with
the modification of the high-order terms. It is apparent to see
that increasing w leads to decreasing interparticle force F. In
the meantime, the high-order terms can offer a correction.
Figure 4 displays a fitting of Tao and Lan’s experimental
data of a rotating dielectric particle (made of polyamide of
dielectric constant 2.5) and a stationary dielectric one (made
of the same polyamide of dielectric constant 2.5) [11] by
using the presently developed theory [Eq. (7)]. For the fit-
ting, we first fit the case of R=19.314 mm (i.e., gap
=0.381 mm) and E=100 V/m by choosing an appropriate
relaxation time 7=0.003 347 s, according to which the other
two groups of experimental data are fitted very well. Here it
should be remarked that the relaxation time 7=0.003 347 s is
reasonably comparable to that of particles suspended in elec-
trorheological fluids [16]. According to the numerical results,
we find that the relaxation time of the rotating dielectric
particle is about 10~* s. However, for the stationary dielectric
sphere, Maxwell-Garnett theory [17] can be used to predict
the well-known Maxwell-Wagner relaxation time (see Ap-
pendixes A and B) 7,=(€+2¢,)/(0+20;,), where o and
opmean the conductivity of the particle and the host argon
gas, respectively. From the experiments by Tao and Lan [11],
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FIG. 3. (Color online) Same as Fig. 2, but versus the rotating
frequency of the particle.
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FIG. 4. (Color online) Fitting of the experimental data of a
rotating dielectric particle and a stationary dielectric one in an elec-
tric field. The symbols denote the data which are extracted from
Ref. [11]. According to our theory [Eq. (7)], the dotted line is plot-
ted by choosing an appropriate relaxation time 7=0.003 347 s, for
the fitting of the case of R=19.314 mm (i.e., gap=0.381 mm). The
relaxation time 7=0.003347 s is used for the fitting of the other two
cases. Good agreement between the theory and the experiment is
shown.

we have 0=10"""S/m and o,=0, thus yielding
Tyw=0.3983 s. In this case, we can conclude that the expres-
sion for the Maxwell-Wagner relaxation time 7, does not
hold for touching rotating dielectric spherical particles. And
the leaky dielectrics process which the Maxwell-Wagner re-
laxation time [17] comes from (see Appendixes A and B)
may not be the exact source of the relaxation time of the
touching rotating particles. Generally speaking, the surface
property of touching rotating dielectric particles is likely to
bring such a short relaxation time ~ 1073 s, due to the effect
of multipolar interaction. For displaying the theoretical re-
sults in Fig. 4, we have assumed that the relaxation time of
the touching rotating particle is unchanged, even if the sepa-
ration between the two particles is changed. In fact, the in-
teraction between the particles also has an effect on the re-
laxation time, too. To determine the relation between
relaxation time 7 and separation R, we try to use Eq. (7) to fit
each group of data extracted from the Tao-Lan experiments
of a rotating dielectric particle and a stationary one. For ob-
taining an excellent agreement between the data and the de-
veloped theory [Eq. (7)], more accurate relaxation times 7
should be used instead, as listed in Table I. It is shown that
the relaxation times of the touching rotating dielectric spheri-
cal particles relate to their separation and thus the multipolar
interaction and that they take the values with the same order
of magnitude for the current systems. The latter implies the
reason why the three groups of experimental data are fitted
very well by using a single relaxation time 7=0.003 347 s.

IV. DISCUSSION AND CONCLUSION

Here some comments are in order. The Gu-Yu-Hui theory
of relaxation [12] is valid for dielectric-dielectric, metallic-
metallic, and dielectric-metallic particles under dc electric
fields and for dielectric-dielectric particles under ac electric
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TABLE I. Relaxation time 7 which should be used to achieve a
good agreement between the present theory [Eq. (7)] and the Tao-
Lan experimental data of a rotating dielectric sphere (polyamide)
and a stationary dielectric one (polyamide). For comparison, the
Maxwell-Wagner relaxation time 7,y is also calculated.

Fs[ EO R T TMW
(1073 N) (V/mm) (mm) (1073 s) (1071 s)
1.0 100 19.441 3.093 3.983
1.8 100 19.314 3.347 3.983
0.8 100 19.568 5.838 3.983

fields. In the Tao-Lan experiments [11], they used ac fields at
frequency 300 Hz. Thus, in this work we have focused on
dielectric-dielectric particles only. As shown above, the
theory can help to determine the relaxation time of touching
rotating dielectric particles, for which the usual Maxwell-
Wagner relaxation time (see Appendixes A and B) is no
longer valid to predict the accurate value. The reason is that
the usual Maxwell-Wagner relaxation time holds only for
isolated (or nontouching) stationary particles [18]. In this
work, while one 7 is extracted from one group of experimen-
tal data, it can be used to fit the other two groups of data very
well. This shows that the 7 was determined accurately in this
way. However, this 7is two orders of magnitude smaller than
that evaluated from the Maxwell-Wagner relaxation. This
shows that the Maxwell-Wagner relaxation seems to be in-
correct here. For the case of touching rotating particles
(rather than that of isolated stationary particles), one might
estimate the relaxation time by comparing experimental data
(e.g., those by Tao and Lan [11]) and the current theory. On
the other hand, for treating touching rotating particles, we
suggest that the Maxwell-Wagner relaxation be improved by
including the effects of dynamics and multipolar interaction
arising from touching particles.

In Appendixes A and B, we have derived the Maxwell-
Wagner relaxation time for either an infinite large plank or a
dielectric sphere by solving the charge conservation law and
the corresponding boundary conditions. Based on this, it is
apparent that the Maxwell-Wagner relaxation time is only
determined by the dielectric constant and electric conductiv-
ity of the plank or sphere. For our system of two touching
particles, one of which is rotating, both the dynamic effects
and the interparticle interaction are expected to contribute
together to the surprisingly short relaxation time that differs
from the relaxation time predicted by the Maxwell-Wagner
theory.

To sum up, we have developed the Gu-Yu-Hui theory of
relaxation to account for the Tao-Lan observations of re-
duced attracting forces between a rotating dielectric particle
and a stationary one. We have shown that the origin of the
reduction in the attracting forces is due to a redistribution of
the polarization charges on the surface of the dielectric par-
ticle rotating around its center. Also, the relaxation time of
the rotating particle can be accurately extracted by compar-
ing the theory with the experimental data, for which the well-
known Maxwell-Wagner relaxation time fails. This work is
of value for the study of dynamic electrorheological fluids or
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FIG. 5. (Color online) Sketch of an infinite large plank in an
applied electric field Eyz.

other kinds of colloidal suspensions, or even living cells
suspensions.
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APPENDIX A: THE MAXWELL-WAGNER RELAXATION
TIME FOR AN INFINITE LARGE PLANK

Let us consider an infinite large plank in an applied elec-
tric field Eyz; see Fig. 5. The dielectric constant of the plank
and the host medium is € and €, while the conductivity is o
and oy, respectively. The electric field inside the plank is E;,
and on the edge of the plank, the electric field outside is E,.
When the field is suddenly applied, the charge in the plank
has not been redistributed. So we have E,=E( and E;=E, at
first. After a long time, the whole system come to its station-
ary state. With the theory of electrodynamics, we have
E,=E; and E,-=€—:EO in that condition. Further assuming that
the relation between the electric field outside E; and that
inside E; is linear, just as

E;-n=aE; -n+bE-n, (A1)
we obtain
E, - n=E;-n+(E,-E;-n)=E,. (A2)
The appropriate boundary conditions are
Soou=E, -1 —€E; - 1, (A3)
V -iloou= o4Ey - 11— oE; - 1. (A4)

At last, we consider the charge conservation law

PHYSICAL REVIEW E 75, 021401 (2007)
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FIG. 6. (Color online) Sketch of a dielectric sphere in an applied
electric field Ez.

% +V-j=0. (A5)
Solving Egs. (A2)—(AS5), we obtain
(1)~ (1=-e), (A6)
where the relaxation time 7 is
T= E. (A7)
o

APPENDIX B: THE MAXWELL-WAGNER RELAXATION
TIME FOR A DIELECTRIC SPHERE

If a sphere (Fig. 6) takes the place of the plank we dis-
cussed in Appendix A, we can calculate the relaxation time
in the same way. When the field is suddenly applied, the
system has E,=F, and E;=E, which is the same as the plank
case. After the whole system comes to its stationary state,
there may be a free charge cos(6) on the surface. On the
polar coordinates of the sphere (where 6=0), we have

3 e
Eh=_EE0 and Ei= .

e+2€, e+2e,

(A1) we obtain

E, in that case. Further using Eq.

E,-n=E; -n+3(Ey,cos 0—E; 1) =3Eycos 0-2E; - 7.

(B1)
Solving Egs. (A3)-(A5) and (B1), we obtain
(1)~ (1-e"), (B2)
where the relaxation time 7 is
= :—22’; (B3)
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